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Abstract

1 Introduction

In this paper we consider the least-square regression algorithm with ℓ1-regularizer. The

main result will be the satisfactory learning rates.

In the formal setting of the regression problem, we often have a compact metric space

(X, d) as the input space and Y = R as the output space. Let ρ be a Borel probability

measure on Z = X × Y . For each pair (x, y) ∈ Z, the prediction accuracy of a predictor

f : X → Y could be measured by the least-square loss (f(x) − y)2. The generalization

error for f with respect to ρ is defined as

E(f) =

∫
Z

(f(x) − y)2dρ. (1.1)

The function that minimizes the error is called the regression function. It is given by

fρ(x) =

∫
Y

ydρ(y|x), x ∈ X, (1.2)

where ρ(·|x) is the conditional probability measure at x induced by ρ. A standard as-

sumption on ρ(·|x) which we will use throughout the paper is that, for some M ≥ 0, ρ(·|x)

is almost everywhere supported on [−M, M ], that is, y ≤ M almost surely with respect

to ρ. It is immediately from the definition of fρ that |fρ(x)| ≤ M . In this paper, without

loss of generality, we assume M ≥ 1.

Since ρ is usually unknown, fρ cannot be obtain directly. The target of the regression

problem is to learn regression function or to find good approximations from a set of

samples z = {(xi, yi)}m
i=1 ∈ Zm which is drawn independently according to the measure
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ρ. This is a typical ill-posed problem and regularization technique is needed. Set the

empirical error as

Ez(f) =
1

m

m∑
i=1

(f(xi) − yi)
2.

It is a discretization of the error E(f). Given a hypothesis space H (a set of functions form

X to Y ) and a regularizer (a penalty functional) Ω : H → R+, the Tikhonov regularization

scheme searching for an approximation of fρ is described as

fz = arg min
f∈H

{
Ez(f) + λΩ(f)

}
. (1.3)

Here λ = λ(m) ≥ 0 usually depended on m is called the regularization parameter. Note

that by choosing different hypothesis space H and regularizer Ω, we will get different

learning algorithms. The efficiency of the algorithm is measured by the difference between

fz and the regression function fρ. Because of the least-square nature, the measurement

is the weighted L2 metric in L2
ρX

defined as ∥f∥L2
ρX

= (
∫

X
|f(x)|2dρX)1/2, where ρX is the

marginal distribution of ρ on X. One can easily check that

∥fz − fρ∥2
L2

ρX
= E(fz) − E(fρ). (1.4)

So estimating error (1.4) for the algorithm (1.3) is the main goal of theoretic analysis.

One concrete example is the least-square regularization scheme with application of

Mercer kernels [2]. Recall that, a Mercer kernel K is a function on X × X which is

continuous and positive semi-definite, (HK , ∥ · ∥K) is the associated reproducing kernel

Hilbert space [1], then the scheme is given by

fz = arg min
f∈HK

{
Ez(f) + λ∥f∥2

K

}
. (1.5)

It has been well understood due to many literatures [3, 4, 5, 6]. The rates of convergence

of fz to fρ in L2
ρX

-space has been estimated by means of properties of ρ and K.

In this paper, we are interested in a least-square learning algorithm for regression

with ℓ1-regularizer. Given a symmetric and continuous kernel function K : X × X → R
which is not necessarily positive semi-definite, we consider the following sample dependent

hypothesis space defined by

HK,z =

{ m∑
i=1

αiKxi
: αi ∈ R

}
,

where Kt(·) = K(·, t). The learning algorithm is given by

fz,λ = arg min
f∈HK,z

{
Ez(f) + λΩz(f)

}
, (1.6)
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where

Ωz(f) =
m∑

i=1

|αi| for f =
m∑

i=1

αiKxi
.

The motivation we consider this algorithm is that the ℓ1-regularizer often leads to sparsity

of the regression coefficients {αi} with properly chosen regularization parameter λ. This

phenomena has been empirically observed in LASSO algorithm [10, 11, 12] and verified

in the literature of compressed sensing[13]. Some theoretic work has been done about

the least square regression with ℓ1-regularizer [7, 8, 9]. For example, if K is Lipschitz

continuous, it is proved in [8] that

∥fz,λ − fρ∥2
L2

ρX
= O(m−1/[3(n+1)]),

under the assumption that fρ in the range of L2
K and ρX satisfies condition Lτ with

τ = n (see definition 2). Here, LK is the integral operator on the space L2
ρX

defined

by LKf =
∫

X
Kuf(u)dρX(u). The convergence rate stated is low and depends on the

dimension n of the input space X which is often large for learning problems. In [9] under

the assumption that K ∈ Cs(X × X) with s ≥ 2, by making fully use of higher order

regularity of K and induced approximation, the learning rate can be improved to 1
3
− ϵ

for any 0 < ϵ < 1/3 if K is C∞ kernels.

Our setting is mainly followed by [9]. We will consider how fast fz,λ approximates fρ

as the sample size m increases. Learning rates will be given in terms of the input space

X, and the measure ρ and the kernel K. We assume X is a compact subset of Rn which

satisfies an interior cone condition.

Definition 1. A subset X of Rn is said to satisfy an interior cone condition, if there

exists an angle θ ∈ (0, π/2), a radius r > 0, and a unit vector ξ(x) for every x ∈ X such

that the cone

C(x, ξ(x), θ, r) =
{
x + ty : y ∈ Rn, |y| = 1, yT ξ(x) ≥ cosθ, t ∈ [0, r]

}
is contained in X.

The sampling process on X is based on the marginal distribution ρX , we assume that

ρX satisfies condition Lτ .

Definition 2. A probability measure ρX on X is said to be satisfy condition Lτ with 0 <

τ < ∞ if there exists some Cτ > 0 such that for any ball B(x, r) = {u ∈ X : d(u, x) < r},
we have

ρX(B(x, r)) ≥ Cτr
τ ∀x ∈ X, 0 < r ≤ 1. (1.7)
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If X satisfies interior cone condition and ρ is the uniform distribution on X, then (1.7)

holds with τ = n and Cτ depends on X.

In this paper, we will apply a refined uniform concentration inequality involving the

ℓ2-empirical covering numbers (see definition 5) to derive learning rates and the iteration

method will be used to give a sharper bound for algorithm (1.6). Firstly, let us state a

result for C∞ kernels.

Theorem 1. Assume that X satisfies an interior cone condition, K ∈ C∞(X × X), fρ

lies in the range of L2
K, and ρX satisfies condition Lτ with some τ > 0. Let 0 < δ < 1,

0 < ϵ < 1/2 and λ = mϵ/2−1/2. If m > M̃δ,ϵ, then with confidence 1 − δ, we have

∥fz,λ − fρ∥2
L2

ρX
≤ CX,ρ,K

(
1 + log(4(1/ϵ + 1)/δ)

)
m−( 1

2
−ϵ),

where

M̃δ,ϵ = C
4/ϵ2

M

{
log(m + 1) + log(4(1/ϵ + 1)/δ)

}4max{ 1
ϵ2

, n
τϵ2

}

,

and CX,ρ,K, CM are constant independent of m, δ and ϵ.

Obviously, our result is shaper than [9].

2 Main Result

Except for the regularizers, the main difference between algorithms (1.5) and (1.6) is that,

the hypothesis space in the first algorithm is independent on samples. A useful approach

for getting learning rate for regularization schemes with sample independent hypothesis

spaces is error decomposition [5] which decomposes the total error (1.4) into the sum of a

sample error and a regularization error (or approximation error). The main difficulty with

algorithm (1.6) is the dependence of the hypothesis space HK,z on z. This was pointed

out in [7] where a modified error decomposition technique is introduced by means of an

extra hypothesis error. In order to do error decomposition for algorithm (1.6), we use ℓ1

sequences to define a function space.

Definition 3. Take the Banach Space H0 =
{
f : f =

∑∞
j=1 αjKxj

, {αj} ∈ ℓ1, {xj} ⊂ X
}

with the norm

∥f∥ = inf

{
∞∑

j=1

|αj| : f =
∞∑

j=1

αjKxj

}
.

Since X is compact,when K ∈ Cs(X × X) with s ≥ 0, H0 can be regarded as a

subspace of Cs(X) with the inclusion map I : H0 → Cs(X) bounded as

∥f∥Cs(X) ≤ ∥K∥Cs(X×X)∥f∥, ∀f ∈ H0. (2.1)
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Denote κ = ∥K∥C(X×X). If we set BR = {f ∈ H0 : ∥f∥ ≤ R}, then for all R > 0, the set

I(BR) is compact in Cs(X).

We introduce a regularizing functions as

fλ = arg min
f∈H0

{E(f) + λ∥f∥} (2.2)

Using (1.4), the following error decomposition process is used in [8, 9].

Proposition 1. Let fz,λ be defined by (1.6) with λ > 0. Then

∥fz,λ − fρ∥2
L2

ρX
≤ S(z, λ) + H(z, λ) + D(λ). (2.3)

Where

S(z, λ) = E(fz,λ) − Ez(fz,λ) + Ez(fλ) − E(fλ)

H(z, λ) = {Ez(fz,λ) + λΩz(fz,λ)} − {Ez(fλ) + λ∥fλ∥}

D(λ) = E(fλ) − E(fρ) + λ∥fλ∥

S(z, λ) is called sample error. Since generally HK,z ⊂ H0, fλ may not be in the space

HK,z. The second item H(z, λ) is so called hypothesis error due to the different hypothesis

spaces. While the last item D(λ) is called regularization error. Obviously, form (1.4) and

definition (2.2)

D(λ) = inf
f∈H0

{
∥f − fρ∥2

L2
ρX

+ λ∥f∥
}

.

Usually we use D(λ) to measure the approximation ability of H0. For getting rates we

shall assume that for some constants q ∈ (0, 1] and cq > 0,

D(λ) ≤ cqλ
q, ∀λ > 0. (2.4)

A sufficient condition to estimate the regularization error D(λ) is given in [8]. We state

it as follows.

Proposition 2. If fρ = Ls
Kg for some 0 < s ≤ 2 and g ∈ L2

ρX
, then

D(λ) ≤
(
∥g∥2

L2
ρX

+ κ∥g∥L2
ρX

)
λ

2s
s+2 ∀λ > 0. (2.5)

If K ∈ Cs(X × X) with s ≥ 2, applying the symmetry of the kernel and a local

polynomial reproduction formula form the literature of multivariate approximation [14,

15], a estimation for hypothesis error H(z, λ) given by [9] is stated as follows.

Proposition 3. Suppose X satisfies an interior cone condition with radius RX > 0 and

angle θ ∈ (0, π/2), if ρX satisfies condition Lτ with some τ > 0, K ∈ Cs(X × X) with

5



s ≥ 2, (2.4) is valid, then for 0 < δ < 1, 0 < λ ≤ 1 and m ≥ C̃0 (log(2/δ) + log(m + 1)),

with confidence 1 − δ
2
,

H(z, λ) ≤ cqλ
q + C̃1λ

2(q−1)

(
log(2/δ) + log(m + 1)

m

) s
τ

(2.6)

where C̃0 and C̃1 depend on X, τ, Cτ , RX , θ, n, s and ∥K∥Cs.

In this paper, we focus on estimating the sample error S(z, λ). Since the quantity

E(fz,λ) − Ez(fz,λ) needs to be estimated by some uniform law of large numbers. To this

end, we need the capacity of the hypothesis space, which plays an essential role in sample

error estimates. Covering number as an important measurement of the capacity of a

function set has been well studied in a lot of literatures [16, 17, 18]. Firstly, we will give

a general definition of covering number.

Definition 4. Let (M , d) be a pseudo-metric space and S ⊂ M a subset. For every

ϵ > 0, the covering number of S by balls of radius ϵ with respect to d is defined as the

minimal number of balls of radius ϵ whose union covers S, that is,

N (S, ϵ, d) = min

{
n ∈ N : ∃{sj}n

j=1 ⊂ M such that S ⊂
n∪

j=1

B(sj, ϵ)

}
,

where B(sj, ϵ) = {s ∈ M : d(s, sj) ≤ ϵ} is the ball in M .

Next, we introduce the covering number of function class. Let d2 denote the normalized

ℓ2-metric on the Euclidian space Rm given by

d2(a,b) =

(
1

m

m∑
i=1

|ai − bi|2
)1/2

for a = (ai)
m
i=1,b = (bi)

m
i=1 ∈ Rm.

Definition 5. Let F be a set of functions on X, x = (xi)
m
i=1 ⊂ Xm and F|x =

{(f(xi))
m
i=1 : f ∈ F} ⊂ Rm. The ℓ2-empirical covering number of F associated to x

is defined as

N2,x(F , ϵ) = N (F|x, ϵ, d2).

Moreover, the ℓ2-empirical covering number of F is given by

N2 (F , ϵ) = sup
m∈N

sup
x∈Xm

N2,x (F , ϵ) .

While the uniform covering number of F is defined as N (F , ϵ, ∥·∥∞), the covering number

of F with respect to the L∞-metric.
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Note that ℓ2-empirical covering number is always smaller than the uniform covering

number and hence help to yield sharper bounds. Let us state our main result on analysis.

Theorem 2. Suppose X satisfies an interior cone condition, if ρX satisfies condition Lτ

with some τ > 0, K ∈ Cs(X × X) with s ≥ 2 and approximation error condition (2.4)

is valid. Assume B1 satisfy the capacity condition with a constant cp > 0 and p ∈ (0, 2),

that is

logN2(B1, ϵ) ≤ cp

(
1

ϵ

)p

, ∀ϵ > 0. (2.7)

Set

γ1 = max
{s

τ
, 1
}

, γ2 = min
{s

τ
, 1
}

, (2.8)

and

γ3 =

{
min

{
1

2+p
, γ2

2(1−q)

}
if 0 < q < 1

1
2+p

if q = 1
. (2.9)

Take λ = mϵ−γ3 with 0 < ϵ < γ3. Define

γ5 = min {γ2 − (3 − 2q)(γ3 − ϵ), (q − 1)(γ3 − ϵ)} and β = γ3/(2ϵ) + 1/2, (2.10)

for any 0 < δ < 1 and m > mδ,ϵ, with confidence 1 − δ, we have

∥fz,λ−fρ∥2
L2

ρX
≤ CX,ρ,KC2β

0 M4β

(
1+log(4(β+1)/δ)

){
log(m+1)+log(4(β+1)/δ)

}2max{β,γ1}

m−Θ,

where

Θ = min

{
2

p + 2
+ 2γ5, γ2 − 2(1 − q)(γ3 − ϵ), q(γ3 − ϵ)

}
and

mδ,ϵ := max

{
C̃0 (log(2(β + 1)/δ) + log(m + 1)) ,

{
2C0 (1 + log(4(β + 1)/δ)) M2

} 1
2ϵ ,

{
4C1 (log(4(β + 1)/δ) + log(m + 1))γ1 /M2

} 1
γ4 ,
{
4C3/M

2
} 1

q(γ3−ϵ)

}
with γ4 defined as

γ4 =

{
2(1 − q)ϵ if 0 < q < 1

γ2 if q = 1
. (2.11)

The constants CX,ρ,K, C̃0, C0, C1 and C3 is independent of m, δ and ϵ.

Remark 1. We will show that the capacity condition (2.7) always hold for the space H0.
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3 Estimates for the Sample Error

Under the assumption that all the samples are independent drawn form ρ and |y| ≤ M

almost truly, we are in the position to estimate the sample error S(z, λ) which can be

rewritten as

S(z, λ) = S1(z, λ) + S2(z, λ)

where

S1(z, λ) = {Ez(fλ) − Ez(fρ)} − {E(fλ) − E(fρ)}

and

S2(z, λ) = {E(fz,λ) − E(fρ)} − {Ez(fz,λ) − Ez(fρ)} .

The first term can be estimated by using one-side Bernstein inequality.

Lemma 1. Let ξ be a random variable on a probability space Z with expectation µ = Eξ

and variance σ2(ξ) = σ2. If |ξ(z) − µ| ≤ Mξ for almost all z ∈ Z, then

1

m

m∑
i=1

ξ(zi) − µ ≤
2Mξ log 1

δ

3m
+

√
2σ2 log 1

δ

m
(3.1)

with confidence 1 − δ.

Proposition 4. For any 0 < δ < 1, with confidence 1 − δ/4,

S1(z, λ) ≤
7 (3M + κD(λ)/λ)2 log 4

δ

3m
+

1

2
D(λ) (3.2)

Proof. Form the definition of D(λ) and (1.4), we know that

λ∥fλ∥ ≤ E(fλ) − E(fρ) + λ∥fλ∥ = D(λ).

It follows from (2.1) that

∥fλ∥∞ ≤ κ∥fλ∥ ≤ κD(λ)/λ.

Set ξ(z) = (y − fλ(x))2 − (y − fρ(x))2, since |fρ(x)| ≤ M almost everywhere, we have

|ξ(z)| ≤ (3M + ∥fλ∥∞) (M + ∥fλ∥∞) ≤ c := (3M + κD(λ)/λ)2 .

Hence Mξ = 2c. Moreover,

E(ξ2) =

∫
Z

{fλ(x) + fρ(x) − 2y}2 {fλ(x) − fρ(x)}2 dρ ≤ (3M + ∥fλ∥∞)2 ∥fλ − fρ∥2
L2

ρX

which implies that σ2(ξ2) ≤ E(ξ2) ≤ cD(λ). Now applying lemma 1, with confidence

1 − δ/4, we have

S1(z, λ) =
1

m

m∑
i=1

ξ(zi) − E(ξ) ≤
4c log 4

δ

3m
+

√
2cD(λ) log 4

δ

m
≤

7c log 4
δ

3m
+

1

2
D(λ)

the last inequality holds since ab ≤ 1
2
a2 + 1

2
b2.
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Before estimating S2(z, λ), we will state some results about the covering number con-

cerning H0. Recall B1 is the unit ball in H0 and define Diam(X) := maxx,y∈X ∥x − y∥.

Proposition 5.

(i) If K is Lipschitz continuous of order α with 0 < α ≤ 1, that is for some constant

cα > 0,

|K(t, x) − K(t, x′)| ≤ cα|x1 − x2|α, ∀t, x, x′ ∈ X. (3.3)

Then for all ϵ > 0,

logN2 (B1, ϵ) ≤ C̃2

(
1

ϵ

)2n/(n+2α)

(3.4)

where C̃2 depend on n, α, cα, κ and Diam(X).

(ii) If K ∈ Cs(X×X) for some s > 0, then there is C̃3 > 0 depending on X, s and ∥K∥Cs

such that for all ϵ > 0,

logN (B1, ϵ, ∥ · ∥∞) ≤ C̃3

(
1

ϵ

)n/s

. (3.5)

The result (ii) is directly result form [17, 18]. We leave the proof for (i) in the appendix.

We will use the following uniform concentration inequality stated in [19].

Lemma 2. Let F be a class of bounded measurable functions. Assume that there are

constant B, c > 0 and α ∈ [0, 1] such that for all f ∈ F , ∥f∥∞ ≤ B and Ef2 ≤ c(Ef)α.

If for some a > 0 and p ∈ (0, 2),

logN2 (F , ϵ) ≤ aϵ−p, ∀ϵ > 0, (3.6)

then there exist a constant c′p depending only on p such that for any t > 0, with probability

at least 1 − e−t, there holds

Ef − 1

m

m∑
i=1

f(zi) ≤
1

2
η1−α (Ef)α + c′pη + 2

(
ct

m

) 1
2−α

+
18Bt

m
, ∀f ∈ F , (3.7)

where

η := max

{
c

2−p
4−2α+pα

( a

m

) 2
4−2α+pα

, B
2−p
2+p

( a

m

) 2
2+p

}
.

From (3.4), we know that condition (3.6) in lemma 2 always holds for B1 if K ∈
Cs(X × X) with s > 0. We apply lemma 2 to a set of function FR with R > 0, where

FR =
{
(y − f(x))2 − (y − fρ(x))2|f ∈ BR

}
(3.8)
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Proposition 6. Assume B1 satisfy the capacity condition with a constant cp > 0 and

p ∈ (0, 2), that is

logN2(B1, ϵ) ≤ cp

(
1

ϵ

)p

, ∀ϵ > 0.

If R ≥ M , then for all f ∈ BR and δ ∈ (0, 1), with confidence 1 − δ/4, we have

{E(f) − E(fρ)} − {Ez(f) − Ez(fρ)}

≤ 1

2
{E(f) − E(fρ)} + Cκ,p (1 + log(4/δ))

(
1

m

) 2
2+p

R2 (3.9)

where Cκ,p = max
{

c′p(3 + κ)
4−2p
2+p (cp(2 + 2κ))

2
2+p , 20(3 + κ)2

}
.

Proof. Consider the set FR. Each function g ∈ FR has the form g(z) = (y − f(x))2 −
(y− fρ(x))2 with f ∈ BR. Hence E(g) = E(f)−E(fρ) = ∥f − fρ∥2

L2
ρX

, (1/m)
∑m

i=1 g(zi) =

Ez(f) − Ez(fρ) and

g(z) = (f(x) − fρ(x)) {(f(x) − y) + (fρ(x) − y)} .

Since ∥f∥∞ ≤ κ∥f∥ ≤ κR and |fρ(x)| ≤ M , we find that

|g(z)| = (κR + M)(κ + 3R) ≤ (3M + κR)2.

and

Eg2 =

∫
Z

(2y − f(x) − fρ(x))2 (f(x) − fρ(x))2 dρ ≤ (3M + κR)2 Eg.

Moreover, since ∀g1, g2 ∈ FR,

|g1(z) − g2(z)| = | (y − f1(x))2 − (y − f2(x))2 | ≤ (2M + 2κR)|f1(x) − f2(x)|,

there holds

N2,z (FR, ϵ) ≤ N2,x

(
BR,

ϵ

2M + 2κR

)
≤ N2,x

(
B1,

ϵ

R(2M + 2κR)

)
which implies

logN2 (F2, ϵ) ≤ cpR
p(2M + 2κR)pϵ−p.

Since R ≥ M , using lemma 2 with B = c = (3M +κR)2, α = 1 and a = cpR
p(2M +2κR)p,

for ∀g ∈ FR and δ ∈ (0, 1), with confidence 1 − δ/4, there holds

Eg − 1

m

m∑
i=1

g(zi) ≤ 1

2
Eg + c′p

{
(3M + κR)2

} 2−p
2+p

(
cpR

p(2M + 2κR)p

m

) 2
2+p

+20(3M + κR)2 log(4/δ)

m

≤ 1

2
Eg + c′p(3 + κ)

4−2p
2+p (cp(2 + 2κ))

2
2+p

(
1

m

) 2
2+p

R2 +
20(3 + k)2 log(4/δ)

m
R2

≤ 1

2
Eg + Cκ,p (1 + log(4/δ))

(
1

m

) 2
2+p

R2.

Thus we complete our proof.
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4 Error Bounds in a Weak Form

Now we can derive error bounds. For R > 0, denote

W(R) = {z ∈ Zm : ∥fz,λ∥ ≤ R} . (4.1)

Proposition 7. Suppose X satisfies an interior cone condition, if ρX satisfies condition

Lτ with some τ > 0, K ∈ Cs(X ×X) with s ≥ 2 and approximation error condition (2.4)

is valid. Assume B1 satisfy the capacity condition (2.7). For all 0 < λ ≤ 1, 0 < δ < 1

and R > M , when

m ≥ C̃0 (log(2/δ) + log(m + 1)) (4.2)

there is a set VR ⊂ Zm with ρ(VR) ≤ δ such that, for all z ∈ W(R)\VR,

E(fz,λ) − E(fρ) + λΩz(fz,λ) ≤ C0 (1 + log(4/δ))

(
1

m

) 2
2+p

R2

+C1 (log(4/δ) + log(m + 1))max{ s
τ

,1} λ2(q−1)

(
1

m

)min{ s
τ

,1}

+ C2λ
q (4.3)

where C0 = 2Cκ,p, C1 = max{2C̃1,
14(3M+cqκ)2

3
} and C2 = 3cq.

Proof. When m satisfies (4.2), form proposition 3, there exists a subset U1 ∈ Zm with

ρ(U1) ≤ δ/2 such that for every z ∈ Zm\U1,

H(z, λ) ≤ cqλ
q + C̃1 (log(2/δ) + log(m + 1))

s
τ λ2(q−1)

(
1

m

) s
τ

.

Form proposition 4, there exists a subset U2 ∈ Zm with ρ(U2) ≤ δ/4 such that for every

z ∈ Zm\U2,

S1(z, λ) ≤
7 (3M + κD(λ)/λ)2 log 4

δ

3m
+

1

2
D(λ) ≤ 7(3M + cqκ)2 log(4/δ)

3
λ2(q−1) 1

m
+

1

2
cqλ

q

the last inequality holds since 0 < λ ≤ 1 and 0 < q ≤ 1. Form proposition 6, for R ≥ M ,

there exists a subset UR with ρ(UR) ≤ δ/4 such that for every z ∈ W(R)\UR,

S2(z, λ) ≤ 1

2
{E(fz,λ) − E(fρ)} + Cκ,p (1 + log(4/δ))

(
1

m

) 2
2+p

R2

≤ 1

2
{E(fz,λ) − E(fρ) + λΩz(fz,λ)} + Cκ,p (1 + log(4/δ))

(
1

m

) 2
2+p

R2.

Finally, since E(fz,λ)−E(fρ)+λΩz(fz,λ) = H(z, λ)+S(z, λ)+D(λ), let VR = U1∪U2∪UR,

we get desire result.

Learning rate in weak forms can be obtained from proposition 7.
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Proposition 8. Under the assumption of proposition 7. Let 0 < δ < 1 and λ = m−ϑ,

when m ≥ C̃0 (log(2/δ) + log(m + 1)), with confidence 1 − δ, we have

∥fz,λ − fρ∥2
L2

ρX
≤ C̃

(
log

4

δ
+ log(m + 1)

)max{ s
τ

,1}

m−Θ, (4.4)

where

Θ = min

{
qϑ, 1 − 2(1 − q)ϑ,

s

τ
− 2(1 − q)ϑ,

2

2 + p
− 2ϑ

}
,

and C̃ = C0M
4 + C1 + C2 is a constant independent of m or δ.

Proof. The definition of fz,λ tells us that,

λΩz(fz,λ) ≤ Ez(fz,λ) + λΩz(fz,λ) ≤ Ez(0) + 0 ≤ 1

m

m∑
i=1

(yi − 0) ≤ M2

hold almost surely. Since ∥fz,λ∥ ≤ Ωz(fz,λ), we have ∥fz,λ∥ ≤ M2/λ for all most z ∈ Zm.

Therefore, W(M2/λ) = Zm. Take R := M2/λ ≥ M due to M ≥ 1 and 0 < λ ≤ 1. Form

proposition 7, when m ≥ C̃0 (log(2/δ) + log(m + 1)), with confidence 1 − δ, we have

∥fz,λ − fρ∥2
L2

ρX
≤ C0 (1 + log(4/δ)) M4λ−2

(
1

m

) 2
2+p

+C1 (log(4/δ) + log(m + 1))max{ s
τ

,1} λ2(q−1)

(
1

m

)min{ s
τ

,1}

+ C2λ
q.

Using this inequality, let λ = m−ϑ, we get the desire result.

Remark 2. In [9], they give the bound in a similar form as (4.4) with Θ = min{qϑ, s
τ
−

2(1− q)ϑ, 1− 2(1− q)ϑ, 1
1+2n/s

− 2ϑ}. Our bound is sharper than [9] since p ≤ n/s always

holds form (3.5).

5 Strong Bound by Iteration

In this section, we will use the iteration technique to obtain strong error estimation. The

method in the previous section was rough because we use the bound ∥fz,λ∥ ≤ M2/λ

which is much worse than the bound for fλ, namely, ∥fλ∥ ≤ D(λ)/λ. Since fz,λ is a good

approximation of fλ, one would expect ∥fz,λ∥ to have some tighter bound. We shall prove

this is the case with high probability by applying proposition 7 iteratively. We will use

a similar iteration technology showed in [5]. The strong bound will be proved after two

lemmas. Recall the set W(R) defined by (4.1). The following lemma is a direct result

form proposition 7. Here, we mainly use the upper bound for R and the fact that λ∥fz,λ∥
is bounded by E(fz,λ) − E(fρ) + λΩz(fz,λ). Recall (2.8), we denote γ1 = max

{
s
τ
, 1
}

and

γ2 = min
{

s
τ
, 1
}
.

12



Lemma 3. Under the assumption of proposition 7. For any 0 < δ < 1, 0 < λ ≤ 1 and

M ≤ R ≤ M2/λ, there is a set VR ⊂ Zm with ρ(VR) ≤ δ such that

W(R) ⊂ W(amM2λ−2R + bmλ−1) ∪ VR,

where

am = C0 (1 + log(4/δ))

(
1

m

) 2
2+p

,

bm = C1 (log(4/δ) + log(m + 1))γ1 λ2(q−1)

(
1

m

)γ2

+ C3λ
q,

here C3 = max{C2,M}.

Next, we will prove with high probability, tighter bound for ∥fz,λ∥ will be obtain by

iteratively using lemma 3.

Lemma 4. Under the assumption of Theorem 2 and γ1, γ2, γ3, γ4, γ5, β are defined as

the same in Theorem 2. Take λ = mϵ−γ3 with 0 < ϵ < γ3. For any 0 < δ < 1 and

m ≥ mδ, with confidence 1 − βδ, there holds

∥fz,λ∥ ≤
{

Cβ
0 (1 + log(4/δ))β M2β+2 + 2C1 (log(4/δ) + log(m + 1))γ1 + 2C3

}
m−γ5 .

(5.1)

while

mδ = max

{
C̃0 (log(2/δ) + log(m + 1)) ,

{
2C0 (1 + log(4/δ)) M2

} 1
2ϵ ,

{
4C1 (log(4/δ) + log(m + 1))γ1 /M2

} 1
γ4 ,
{
4C3/M

2
} 1

q(γ3−ϵ)

}
.

Proof. We just consider the case 0 < q < 1, the proof is the same for q = 1. For any

0 < ϵ < γ3, take λ = m−ϑ with ϑ = γ3 − ϵ then

ãm := amM2λ−2 = C0

(
1 + log

4

δ

)
M2

(
1

m

) 2
2+p

−2ϑ

≤ C0

(
1 + log

4

δ

)
M2m−2ϵ. (5.2)

We have the trivial bound bm ≥ C3 ≥ M since 0 < q ≤ 1 and 0 < λ ≤ 1. Moreover, a

simple computation show that

bm = C1 (log(4/δ) + log(m + 1))γ1

(
1

m

)γ2−2(1−q)ϑ

+ C3m
−qϑ

≤ C1 (log(4/δ) + log(m + 1))γ1 m−2(1−q)ϵ + C3m
−q(γ3−ϵ).

If m ≥ mδ, we have ãm ≤ 1/2 and bm ≤ M2/2. For any M ≤ R ≤ M2

λ
, there holds

M ≤ ãmR + bmλ−1 ≤ 1

2
R + M2/(2λ) ≤ M2/λ. (5.3)

13



Define a sequence {R(j)}j∈N by R(0) = M2/λ and, for j ≥ 1,

R(j) = ãmR(j−1) + bmλ−1.

Then proposition 8 proves that W(R(0)) = Zm and (5.3) guarantee lemma 3 holds for

each R(j), that is, W(R(j−1)) ⊆ W(R(j))∪VR(j−1) with ρ(VR(j−1)) ≤ δ. Apply this inclusion

for j = 1, 2, . . . , J , with J satisfying γ3/(2ϵ) − 1/2 ≤ J ≤ γ3/(2ϵ) + 1/2. We see that

Zm = W(R(0)) ⊆ W(R1) ∪ VR(0) ⊆ · · · ⊆ W(R(J)) ∪

(
J−1∪
j=0

VR(j)

)
.

It follows that the measure of the set W(R(J)) is at least 1 − Jδ ≥ 1 − δ(γ3/(2ϵ) + 1/2).

By the definition of the sequence, we have

R(J) = ãJ
mR(0) + bmλ−1

J−1∑
j=0

ãj
m.

Since ãm ≤ 1
2
, hence

∑J−1
j=0 ãj

m ≤ 2. The bound ãm ≤ C0

(
1 + log 4

δ

)
M2m−2ϵ and R(0) =

M2/λ = M2mγ3−ϵ yield

ãJ
mR(0) ≤ CJ

0 (1 + log(4/δ))J M2J+2mγ3−2Jϵ−ϵ.

But J ≥ γ3/(2ϵ) − 1/2 which implies γ3 − 2Jϵ − ϵ ≤ 0. Hence

ãJ
mR(0) ≤ CJ

0 (1 + log(4/δ))J M2J+2.

Moreover,

bmλ−1 ≤ (C1 (log(4/δ) + log(m + 1))γ1 + C3) m−γ5 .

Note γ5 ≤ 0, thus we have

R(J) ≤
{

CJ
0 (1 + log(4/δ))J M2J+2 + 2C1 (log(4/δ) + log(m + 1))γ1 + 2C3

}
m−γ5 .

This prove our statement.

We see that γ5 given in the lemma is larger than ϵ − γ3 for 0 < q ≤ 1 which implies

the bound (5.1) is better than before.

Now we are in the position to prove our main result.

Proof of Theorem 2. For 0 < δ < 1, let δ̃ := 1
β+1

δ ∈ (0, 1) and let mδ,ϵ = mδ̃ be as in

lemma 3. Take

R =

{
Cβ

0

(
1 + log(4/δ̃)

)β

M2β+2 + 2C1

(
log(4/δ̃) + log(m + 1)

)γ1

+ 2C3

}
m−γ5 .
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Let m ≥ mδ,ϵ, lemma 3 tell us that the measure of the set W(R) is at least 1 − βδ̃.

Applying proposition 7 to the above R, we know that, for each z ∈ W(R)\VR,

E(fz,λ) − E(fρ) ≤ C0

(
1 + log(4/δ̃)

){
Cβ

0

(
1 + log(4/δ̃)

)β

M2β+2

+2C1

(
log(4/δ̃) + log(m + 1)

)γ1

+ 2C3

}2
m−( 2

2+p
+2γ5)

+C1

(
log(4/δ̃) + log(m + 1)

)γ1

m−(γ2−2(1−q)(γ3−ϵ)) + C2m
−q(γ3−ϵ).

Since the measure of VR is at most δ̃, we know that the above error bounds holds for

z ∈ W(R)\VR which has measure at least 1−βδ̃− δ̃ = 1− δ. Thus we complete our proof

with CX,ρ,K = C0(M
2 + 2C1 + 2C3)

2 + C1 + C2.

Next we will give a proof of theorem 1.

Proof of Theorem 1. Take s = 2 in proposition 2, we will get the estimation of D(λ)

which implies condition (2.4) is satisfied with q = 1. For any 0 < ϵ < 1/2, we take

λ = m−(1/2−ϵ/2). As the iteration process in lemma 4, we do it again with this λ. Since

s can be choose arbitrarily large and p ≤ n/s form proposition 5. If s ≥ τ and s ≥ n/ϵ,

then γ1 = s
τ
, γ2 = 1 and

ãm = C0

(
1 + log

4

δ

)
M2

(
1

m

)ϵ− p
2+p

≤ C0

(
1 + log

4

δ

)
M2

(
1

m

)ϵ/2

,

bm = C1 (log(4/δ) + log(m + 1))
s
τ

(
1

m

)
+ C3

(
1

m

)1/2−ϵ/2

.

Thus we could take β = 1
ϵ
, γ5 = 0 and

mδ,ϵ = max

{
C̃0 (log(2(1/ϵ + 1)/δ) + log(m + 1)) ,

{
2C0 (1 + log(4(1/ϵ + 1)/δ)) M2

} 2
ϵ ,

4C1 (log(4(1/ϵ + 1)/δ) + log(m + 1))
s
τ /M2,

{
4C3/M

2
} 2

1−ϵ

}
If we take s = max {n/ϵ, τ/ϵ}, then from theorem 2, if m > mδ,ϵ, with confidence 1 − δ,

there holds

∥fz,λ − fρ∥2
L2

ρX
≤ CX,ρ,KC

2/ϵ
0 M4/ϵ(

1 + log(4(1/ϵ + 1)/δ)

){
log(m + 1) + log(4(1/ϵ + 1)/δ)

}2max{1,n/τ} 1
ϵ

m−(1/2−ϵ/2).

We set CM = (C̃0 + 2C0 + 4C1 + 4C3)M
2, then M̃δ,ϵ > Mδ,ϵ and when m > M̃δ,ϵ, we have

mϵ/2 > C
2/ϵ
0 M4/ϵ

{
log(m + 1) + log(4(1/ϵ + 1)/δ)

}2max{1,n/τ} 1
ϵ

,

Thus we complete our proof.
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6 Appendix

In this appendix, we will give the proof for proposition 5 (i). We mainly use the following

theorem given in [16].

Theorem 3. Let Q be a probability measure on a measurable space (X ,A), and let F
be a class of measurable functions with measurable square integrable envelope F such that

QF 2 =
∫

F 2dQ < ∞ and

N (F , ϵ∥F∥Q,2, L2(Q)) ≤ C

(
1

ϵ

)V

, 0 < ϵ < 1.

Then there exists a constant K that depends on C and V only such that

logN (convF , ϵ∥F∥Q,2, L2(Q)) ≤ K

(
1

ϵ

)2V/(V +2)

.

Here, N (F , ϵ, L2(Q)) is the covering number relative to the L2(Q)-norm

∥f∥Q,2 =

(∫
|f |2dQ

)1/2

.

An envelope function of a class F is any function x → F (x) such that |f(x)| ≤ F (x) for

every x and f ∈ F . convF is abbreviated to the convex hull of F which is defined as

convF =

{
k∑

i=1

αifi

∣∣∣∣fi ∈ F , αi ∈ R, αi ≥ 0,
k∑

i=1

αi = 1, k ∈ N

}

and convF denotes its closure with respect to L2(Q).

Proof of Proposition 5 (i). We set F1 = {Kx|x ∈ X} and F2 = {F1}∪{−F1}∪{0}. Note

that B1 is in L∞-closure of the set G =

{∑∞
i=1 αiKxi

∣∣∣∣{xi} ⊂ X,
∑∞

i=1 |αi| ≤ 1

}
, recall

∥f∥ = inf
{∑∞

j=1 |αj| : f =
∑∞

j=1 αjKxj

}
, we just verify the claim when ∥f∥ = 1 which

implies ∀0 < ϵ < 1, there exists a sequence {αϵ
i} ∈ ℓ1 and points {xϵ

i} ⊂ X, such that

f =
∞∑
i=1

αϵ
iKxϵ

i
and 1 − ϵ ≤

∞∑
i=1

|αϵ
i | ≤ 1 + ϵ,

set g = 1
1+ϵ

f then g ∈ G and ∥f−g∥∞ ≤ 2κϵ. Hence B1 ⊂ convF2 because of G ⊂ convF2.

Since

N (F2, ϵ, L2(Q)) ≤ 2N (F1, ϵ, L2(Q)) + 1

and we could choose F ≡ κ as the envelope of both F1 and F2, thus we turn to estimate

N (F1, ϵκ, L2(Q)). By condition (3.3), we have

N (F1, ϵκ, L2(Q)) ≤ N (F1, ϵκ, ∥ · ∥∞) ≤ N
(
X, (ϵκ/cα)1/α

)
16



where N (X, ϵ) denotes the covering number of X with respect to the Euclidean distance.

Hence

N (F1, ϵκ, L2(Q)) ≤
(cα

κ

)n
α

(3Diam(X))n

(
1

ϵ

)n
α

.

Applying theorem 3, we get

logN (B1, ϵ, L2(Q)) ≤ logN (convF2, ϵ, L2(Q)) ≤ C̃

(
1

ϵ

)2n/(n+2α)

where C̃ depend on n, α, cα, κ and Diam(X). Finally, ∀m ∈ N, for any samples x =

{xi}m
i=1 ⊂ Xm, the above estimates hold true for Q = 1

m

∑m
i=1 δXi

. Thus we complete our

proof.

References

[1] N.Aronszajn. Theory of reproducing kernels, Trans. Amer. Math. Soc, volume 68:

337-404, 1950.

[2] T. Evgeniou, M. Pontil, and T. Poggio, Regularization networks and suport vector

machine, Adv. comput. Math. 10 (1999), 51–80.

[3] E. De vito, A. caponnetto, and L, Rosasco. Model Selection for Regularized Least-

Squares Algorithm in Learning Theory. Foundations of Computational Mathematics,

5(1):59-85, 2005.

[4] S. Smale and D.X.Zhou. Learning Theory Estimates via Intergral Operator and Their

Approximation. Constructive Approximation, 26(2):153-172, 2007.

[5] Q.Wu, Y.Ying, and D.X.Zhou. Learning rates of least-square regularized regressioin.

Foundations of Computational Mathematics, 6(2): 171-192, 2006.

[6] T.Zhang. Leave-one-out bounds for kernel methods. Neural Computation, 15(6):1397-

1437, 2003.

[7] Q.Wu and D.X.Zhou, Learning with sample dependent hypothesis space, Computers

and Mathematics with Applications 56(2008), 2896-2907.

[8] Q.W.Xiao and D.X.Zhou, Learning by nonsymmetric kernel with data dependent

spaces and ℓ1-regularizer. Taiwan.J.Math. to appear.

[9] H.Y.Wang, Q.W.Xiao and D.X.Zhou, Learning with ℓ1-Regularization for Regression.

Preprint.

17



[10] R.Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Stastistical Society. Series B, 58(1):267-288,1996.

[11] T.Zhang. some sharp performance bounds for least square regression with L1 regu-

larization. Annals of Stastics, 2009.

[12] P.Zhao and B.Yu. On model selection consistency of Lasso. Journal of Machine Learn-

ing Research, 7:2541-2563, 2006.

[13] E.Candès and J.Romberg. Sparsity and incoherence in compressive sampling. Inverse

Problems, 23:969-985, 2007.

[14] H.Wenland. Local polynomial reproduction and moving least squares approximation.

IMA Journal of Mumerical Analysis, 21(1):285-300,2001.

[15] K.Jetter, J.Stoeckler and J.D.Ward. Error estimates for scattered data interpolation

on sphere. Advances in Computational Mathematics,13(1):1-50, 2000.

[16] A.W.Van der vaart and J.A.Wellner, Weak Convergence and Emprical Processes,

Springer-Verlag, New York, 1996.

[17] D.X.Zhou, The covering number in learning thoery, J.Complexity 18 (2002), 739-767.

[18] D.X.Zhou, Capacity of reproducing kernel spaces in learning theory, IEEE Trans.

Inform. Theory 49(2003), 1743-1752.

[19] Q.Wu, Y.Ying, and D.X.Zhou. Multi-kernel regularized classifiers, Jounal of Com-

plexity 23(2007), 108-134.

18


